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We establish a generalized Poisson-Fermi formalism to compute the electrostatic potential next to charged
surfaces in the presence of multiple ion species with different sizes. A generalized Fermi-like ion distribution
is deduced from the excess free energy, after expansion of the functional entropy of free space in which the
ions have all the same size. The ion distribution is expressed in terms of the bulk volume fractions of each ion
species rather than their bulk concentrations so as to account for the excluded volumes. We present size
correlations effects such as underscreening and ion stratification, which have not been investigated before with
such a simple theory. The change of dielectric properties across the space, arising from the finite spatial
occupancy of ions, can be solved self-consistently through the Bruggeman model. The generalized Poisson-
Fermi formalism is anticipated to be useful for interpreting electrophoretic mobility measurements and for
computing the electrostatic potential over the surface of biomolecules in ionic solutions.
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I. INTRODUCTION

The electrostatic interactions between charged objects in
solution and their ion atmosphere play an important role in
biological processes and colloidal stability �1,2�. The folding
of proteins and their biological activity �3–5�, the compac-
tion of genetic materials �6–11�, the adsorption of ions onto
lipid membranes �12–14�, or the self-assembly of biomol-
ecules �15–18� are amongst the numerous examples in biol-
ogy where a theoretical description of the electrostatic inter-
actions can lead to an improved understanding of the
molecular functions in cells and to a better efficacy of drugs
for biomedical applications.

The Poisson-Boltzmann theory �1,2� has been used for
nearly one century to compute the distribution of ions sur-
rounding charged surfaces. This theory considers pointlike
ions interacting via their mean field in a continuum dielectric
medium. The Poisson-Boltzmann theory has been useful to
interpret a variety of experimental data on the binding of
Mg2+ to nucleic acids �19,20�. It has also shown a fair agree-
ment with the spatial distribution of small monovalent ions
near a charged monolayer and inferred from resonant x-ray
reflectivity measurements in salt-free conditions �21�. More
comprehensive models based on integral equation theories
�22,23� or Monte Carlo simulations have shown several dis-
crepancies with the classical Poisson-Boltzmann approach
due to correlation effects arising from the size of ions
�24–27� and from the spatial fluctuations of the electrostatic
potential �28–32�. These models have pointed out the impor-
tance of different sizes in the ion-ion interaction for monova-
lent systems �33�. The composition of the electrical double
layer can be altered compared to the classical theory because
the increase of the effective excluded volume of ions results
in a decrease of the system bulk entropy that favors the ten-
dency of ions to be adsorbed; it can thus lead to a surface
overcharging where an apparent charge is adsorbed onto a

like-charged wall �34�. Experimental investigations have also
revealed a stratification of ions in the vicinity of a charged
surface, attributed among other things, to the close packing
of macroions �35�. The importance of ion sizes and ion-
solvent interactions in the ion distributions has been also
evidenced through x-ray reflectivity measurements of the in-
terface between two electrolyte solutions; the Poisson-
Boltzmann theory could not fully reproduce the experimental
data without the use of a potential of mean force obtained
separately by molecular dynamic simulations �36�.

Integral equation theories and particle simulations, how-
ever, lack the simple physical picture provided by a Poisson-
Boltzmann type of approach. An integrated theory account-
ing for the above mentioned effects would be of great
importance for the mathematical modeling of phenomena
taking place in ionic solutions �37–39�. The problem of vol-
ume exclusion in many-body systems dates back to the van
der Waals description of real gas which finds a statistical
mechanic justification through the lattice gas model �40�.
The lattice model has been successfully used to account for
the excluded-volume interaction of various systems in soft
matter physics: it allows the computation of the Flory-
Huggins free energy of polymer chains �41� or it predicts the
phase separation of binary mixtures of colloids �42�. Like-
wise, the lattice model was applied to ionic systems of
monodisperse size distribution �43–45�, that is, for which
ions have all the same size, and it predicted the formation of
a saturated layer near a highly charged wall as a result of the
close packing of the counterions �44,45�. The ions obeyed a
Fermi-like distribution and consequently the electrostatic po-
tential was rather given by a Poisson-Fermi equation. More
sophisticated techniques rely on density functional theory to
compute the excess free energy �46–50� which, thanks to a
weighted-density approximation, can correct the Poisson-
Boltzmann theory in accord with Monte Carlo simulations
�51�. Such theories are accurate for monodisperse hard
sphere liquids but they introduce an additional degree of
complexity in their treatment, and pose a number of compu-
tational challenges when applied to biomolecules with tortu-
ous topology. The question of polydisperse systems—where
different ion species with different sizes are considered—
although ubiquitous in biology, has been scarcely addressed
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so far with a Poisson-Boltzmann-like approach. The ion-size
asymmetry can be accounted for by allocating a heuristic
dependence on the electrostatic potential to the ion volume
fraction �37�. In a less empirical manner, Chu and co-
workers assessed the binding properties of ions to DNA du-
plexes using a size-modified Poisson-Boltzmann theory �52�.
Considering two populations of ions only, they used the lat-
tice model to solve the electrostatic potential next to a DNA
rod, and arrived at a good agreement with experimental data
by adjusting the ion-size parameters.

In the present work, we introduce a generalized Poisson-
Fermi formalism applicable to polydisperse systems of mul-
tiple ions. The distributions of ions are hence described in
terms of bulk volume fractions of each ion species rather
than just their bulk concentrations. An arbitrary number of
excluded volumes can be taken into account in contrast to
the previously mentioned work by Chu and co-workers �52�.
Size correlation effects, which have not been studied before
in the framework of such a simple theory, are exemplified
next to a charged wall: underscreening, saturated layer of
mixed ions and ion stratification are reported. At last, we
propose a self-consistent way to compute the change of the
effective dielectric constant as the ion volume fractions vary
across the solution.

II. DETERMINATION OF THE FREE ENERGY
AND ION DISTRIBUTIONS

A. Lattice gas model for monodisperse systems

To begin, we consider a solution containing M ion species
of valence zi�1� i�M�, and volume fraction �i�civi, where
ci is the concentration and vi the excluded volume. The vol-
ume fractions always verify 0��i�1. Note that the solvent
can be readily included as an ion species of valence zero.
There is no general expression for the free energy of such a
system, so we need to proceed first by considering the mono-
disperse situation where all the ions have an identical ex-
cluded volume v1= ¯ =vM �v. We use a lattice gas model
�40,53� in which the ions are placed in discrete cells of vol-
ume v, and we will later extend the free energy to the poly-
disperse situation. The ion species occupies each N1¯NM
sites of the lattice in such a way that no two ions occupy the
same site. The total number of ions is N�N1+ ¯ +NM dis-
tributed across the lattice of volume V made of R sites so that
V=Rv. Quite generally, the canonical partition function in
phase space �rN ,pN� is

Z��,V,N1, . . . ,NM ;v�

=
1

N1!
¯

1

NM!

1

h3N � drN� dpN exp�− �H�rN,pN�� ,

�1�

where ��1 /kBT with kB the Boltzmann constant and T the
temperature, and h is the Planck constant. The Hamiltonian
H can be written as

H�rN,pN� = �
k=1

N
pk

2

2mk
+ �

k=1

N

zke��rk� + �
k�l

U�rk,rl� , �2�

with mk the mass of particle k, ��rk� the electrostatic poten-
tial, and U�rk ,rl� the potential of hardcore repulsion between
two particles k and l. The latter potential is +� when two
ions occupy the same site, that is, �rk−rl��d with d the
distance separating the lattice cells �v�d3�, and zero other-
wise. The term arising from the kinetic energy in the Hamil-
tonian can be integrated over the whole range of momenta p.
A usual simplification for the electrostatic energy is to con-
sider that the ions interact with one another through their
mean field potential �, constant over the volume V in con-
sideration. The canonical partition function now reads

Z��,V,N1, . . . ,NM ;v�

=
1

N1!
¯

1

NM!

1

�1
3N1

¯

1

�M
3NM

exp	− ��
i=1

M

zieNi�

�� drN exp�− ��

k�l

U�rk,rl�� , �3�

where �i=h / �2�mikBT�1/2 is the de Broglie thermal wave-
length of ion species i. The integral can be evaluated by
placing the N indistinguishable ions on R lattice sites with no
two ions occupying the same site. It yields

� drN exp�− ��
k�l

U�rk,rl��
= Rv ¯ �R − N + 1�v = vN R!

�R − N�!
. �4�

The free energy is then

F��,V,N1, . . . ,NM ;v� = − kBT ln�Z��,V,N1 . . . NM ;v��

= �
i=1

M

zieNi� + kBT�
i=1

M

Ni ln	Ni

R

�i
3

v



+ kBTR	1 − �
i=1

M
Ni

R

ln	1 − �

i=1

M
Ni

R

 ,

�5�

where we have used the Stirling’s approximation ln X!
X ln X−X for large X.

B. Extension to polydisperse systems

The density of free energy in the thermodynamic limit f
�F /V can be obtained from Eq. �5� by noticing that the ion
concentrations are ci=Ni /Rv. The free energy is then rewrit-
ten as a functional of the ion concentrations by integrating f
over a domain 	 of the space F=�	fdr, and can be decom-
posed into an ideal Coulomb gas free energy Fid and an
excess free energy Fex such that

F��,c1, . . . ,cM ;v� � Fid + Fex, �6�

with
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Fid��,c1, . . . ,cM ;v�

� �
	
��

i=1

M

zieci� + kBT�
i=1

M

ci ln�ci�i
3��dr �7�

and

Fex��,c1 . . . cM ;v� � TSFS�c1 . . . cM ;v�

� T�
	

kB
1

v
�FS�v�ln �FS�v�dr . �8�

We define here �FS�v��1−c1v− ¯−cMv the volume frac-
tion of free space for a monodisperse system. SFS stands for
the entropy of free space. It reduces the total entropic con-
tribution in the free energy as the ions lose spatial freedom
due to their volume exclusion. Note that the ideal Coulomb
gas free energy Fid generally includes an additional term un-
der the integral, proportional to the ion concentrations,
−kBT�ci �23�. This term is here cancelled by an opposite
contribution arising from the excess free energy and is there-
fore omitted for clarity. The volume fraction of free space for
a polydisperse system is

�FS�v1, . . . ,vM� � 1 − �1 − ¯ − �M . �9�

In order to express SFS in the polydisperse case, we carry out
an expansion in Taylor series of SFS�c1 , . . . ,cM ;v1 , . . . ,vM�
close to an excluded volume of reference vref. To this end, we
actually expand �SFS−�	kB
−1�FS ln �FSdr� given as a func-
tion of v1 , . . . ,vM and where 
�v1 , . . . ,vM� is an effective
excluded volume for the system, verifying the following
properties:

∀�v1, . . . ,vM��kB
−1�FS ln �FS is C�,

min
i

vi � 
�v1, . . . ,vM� � max
i

vi.�
�10�

In particular, we see immediately that ∀v
�v�=v. The ex-
pansion thereby yields

SFS�c1, . . . ,cM ;v1, . . . ,vM�

= �
	

kB
−1�FS ln �FSdr

+ �
i=1

M

�v,i�
	

�Si dr + o�max
i

��v,i�� , �11�

where �v,i��vi−vref� /vref and the functional coefficients of
the series verify

�
	

�Si�c1, . . . ,cM ;vref�dr

� �vref
�

�vi
	SFS − �

	

kB
−1�FS ln �FSdr
�
vref

. �12�

The properties of the effective excluded volume 
 in
Eq. �10� allow us to recover the entropy of free space
in the monodisperse case �8� from the expansion �11�
for any excluded volume v, provided that the sum of

the functional coefficients of the expansion also verify
∀�c1 , . . . ,cM ;vref��S1+ ¯ +�SM =0. A possible way to
evaluate these functional coefficients might be to identify
them with correlation functions known from integral equa-
tion theories such as the mean spherical approximation �23�.

We can hence write the free energy of a polydisperse sys-
tem occupying a region 	 of the space, coupled to a reser-
voir of ions through the chemical potentials i and immersed
in a medium of dielectric constant �:

F��,�,c1, . . . ,cM ;v1, . . . ,vM�

= �
	
�−

����2

2��0
+ �

i=1

M

zieci� + kBT�
i=1

M

ci ln�ci�i
3�

− �
i=1

M

ici + kBT
−1�FS ln �FS�dr

+ �
i=1

M

�v,iT�
	

�Si dr + o�max
i

��v,i�� , �13�

where �0 is the permittivity of free space. The chemical po-
tentials i are obtained by minimization of Eq. �13� with
respect to concentrations ci for any domain 	,

i��,�,c1, . . . ,cM ;v1, . . . ,vM�

= �zie� + kBT ln�ci�i
3� − kBT ln �FS�

+ ���
 − �v,i�kBT�1 + ln �FS�

+ �
j=1

M

�v,jT
��S j

�ci
� + o�max

j
��v,j�� . �14�

�
 is defined by �
��
−vref� /vref and we know from Eq.
�10� that mini �v,i��
�maxi �v,i. Assuming the excluded
volumes are dispersed from each other up to a reasonable
extent, the chemical potentials can be reduced to their
zeroth-order term, that is,

i��,�,c1, . . . ,cM ;v1, . . . ,vM�

 zie� + kBT ln�ci�i
3� − kBT ln �FS�v1, . . . ,vM� .

�15�

Notice that this form of approximated chemical potential
does not allow by itself the existence of the free energy func-
tional because it does not define an exact differential in the
polydisperse case �i /�cj�� j /�ci for i� j.

C. Generalized Fermi-like distribution with polydisperse
volume exclusion

At thermodynamical equilibrium, the chemical potentials
of each ion species must be constant across the space, that is,

i��,�,c1, . . . ,cM ;v1, . . . ,vM�

= i��,0,c1
�, . . . ,cM

� ;v1, . . . ,vM� , �16�

where the superscript � denotes quantities evaluated in the
reservoir, namely, at infinity, where the electrostatic potential
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is set to zero. The temperature is maintained constant as
usual for biological solutions. Using the approximated
chemical potential of Eq. �15�, Eq. �16� can be rearranged
into a relation between the volume fractions and the dimen-
sionless electrostatic potential �*�e� /kBT only:

�1 + �2 + ¯ + �1 +
�FS

�

�i
� exp�zi�*���i + ¯ + �M = 1,

1 � i � M . �17�

We have therefore a system of M equations with M +1 un-
known. Subtracting equalities �17� written for two distinct
ion species i and j yields a relation between the volume
fractions �i and � j in any point of the space, the bulk quan-
tities being fixed:

�i

�i
� =

� j

� j
� exp��zj − zi��*� . �18�

Injecting the relations �18� for every j� i into Eq. �17� writ-
ten for a chosen i gives us the distribution of volume fraction
for each ion species

�i =
exp�− zi�*��i

�

�FS
� + � j=1

M exp�− zj�*�� j
� , 1 � i � M . �19�

Equation �19� is the counterpart of the Boltzmann distribu-
tion in the classical theory with pointlike particles. This re-
lation is reminiscent to the Fermi distribution as it reflects
the lattice-saturation effect for which the system cannot ex-
ceed the allowed maximum of ion concentration whatever its
polarization �37�. A further refined formula along with a pos-
sible expression for the effective excluded volume is pre-
sented in the Appendix. Figure 1 illustrates the form of this
generalized Fermi-like distribution for given valences and
volume fractions in the bulk. The saturation effect is clearly
visible at high electrostatic potential. However, the saturation
may not take place, leading instead to a depletion of a spe-

cific ion population. The volume fraction �i��*� of ion popu-
lation i with valence zi peaks when

�
j=1

M

�zj − zi�exp�− zj�*�
� j

�

�FS
� = zi, �20�

which means that there must be an ion species j of valence zj
such that sgn�zj�=sgn�zi� and �zj�� �zi�. The ion species i will
then be depleted at the benefit of the species j.

The minimum free energy Fmin of the system is given by
injecting the generalized Fermi-like distribution �19� into the
general equation �13�. It reads

Fmin��,�*,c1
�, . . . ,cM

� ;v1, . . . ,vM�

 �
	
�−

����2

2��0
− kBT
−1

�ln�1 + �
i=1

M

exp�− zi�*�
�i

�

�FS
� ��dr . �21�

Interestingly, the knowledge of 
 is not needed in the gen-
eralized Fermi-like distribution �19� but is required for com-
puting the minimum free energy of the system.

III. SIZE CORRELATION EFFECTS WITH POLY-
DISPERSE IONS NEAR A CHARGED WALL

A. Saturated layer and underscreening

The electrostatic potential is related to the charge density
by the Poisson equation that reads

����0 � �*� = − �e2�
i=1

M

zici. �22�

The combination of Eqs. �19� and �22� shall be called here-
after the generalized Poisson-Fermi equation and will allow
us to consistently compute the electrostatic potential and the
ion volume fractions across the space. Notice that at low
electrostatic potentials �*�1, and homogeneous dielectric
medium, the Debye-Hückel approximation is recovered,
and the inverse Debye length keeps its usual form �
= ���e2 /��0��ci

�zi
2�1/2. In the present study, we will limit our-

selves to the electrostatic potential and the ion distributions
next to a wall of charge density �0�0 occupying the plane
x=0. All the quantities are thereby function of x only, and the
differential operator in Eq. �22� is reduced to dx���0dx�*�
with the notation dx=d /dx. The boundary conditions
for �* are then dx�*�x=0�=−�e�0 /��0 and, as before,
�*�x→ +��=0. The Poisson-Fermi equation verifying the
boundary conditions was solved numerically by a collocation
method implemented under MATLAB™. The infinity was
fixed at tenfold the Debye length �−1 from the wall.

In view of using our theory for ionic titration by electro-
phoretic mobility �12,16�, we consider a bulk solution made
of 10 mM of a 1:1 electrolyte referred to as the buffer elec-
trolyte, and of a 1:1 electrolyte with a variable concentration
c� referred to as the added electrolyte. The added ions have
an excluded volume of 0.8 nm3 while the buffer ions have a

FIG. 1. Generalized Fermi-like distribution of a system with
multiple ions. The volume fraction �i versus the dimensionless
electrostatic potential is calculated according to Eq. �19�. M �=10 in
this example� ion species of valence −2 are considered with an
identical ratio �i /�FS

� for every species. The figures next to the
curves indicate the value of �i /�FS

�. The curve of depleted popu-
lation is the distribution of an ion species of valence −1, all the
others being of valence −2.
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fixed excluded volume of 0.15 nm3. Figure 2 shows the re-
sult obtained from the generalized Poisson-Fermi equation
with a polydisperse population of ions �solid line�. This nu-
merical solution connects nicely those obtained with mono-
disperse populations �dashed lines� with 0.15 and 0.8 nm3 of
excluded volume, which are predominant at low and high
concentrations of added ions, respectively. The Poisson-
Boltzmann theory �dotted line� expectedly yields a large dis-
crepancy.

Figure 3�a� shows the dimensionless surface potential of
the wall �

0
* versus c� and the excluded volume of added

counterions v. At high v, we see that �
0
* transiently drops as

if the wall became more negatively charged. As c� increases,
the screening effect comes into play and �

0
* tends again to

neutrality so that the function �
0
*�c�� exhibits a minimum.

We have plotted in Fig. 3�b� the dimensionless surface po-
tential �

0
* normalized to its value obtained from the Poisson-

Boltzmann theory in order to remove the contribution from
the pointlike screening effect. The wall seems thereby to be
underscreened in the sense that size correlations give rise to
less screening than what is predicted by the Poisson-
Boltzmann theory alone for the same ionic bulk concentra-
tions. Such a drop in the surface potential has been reported
before with the electrophoretic mobility of latex nanopar-
ticles in the presence of divalent cations, and confirmed by
simulations based on integral equations theory �25�.

What gives rise to this underscreening? Figure 4 shows
the normalized volume fractions across the solution at the
concentration of added ions that makes �

0
* minimal in Fig.

3�a�. The counterions �+1� form a saturated layer near the
wall in which their concentration approaches their close
packing value. On the other hand, the coions �−1� are
strongly depleted with respect to the classical theory. The
fact that the counterions cannot exceed their close packing
concentrations results in more negative electrostatic poten-
tials �Fig. 4 inset� within the saturated layer compared to the
classical theory: if we consider Eqs. �15� and �16� written for
a counterion species inside the saturated layer ��FS→0�, the
electrostatic contribution zie� must balance the loss of en-
tropy due to the saturation in order to equilibrate the chemi-
cal potential with its bulk value.

In Eq. �18�, when ions i and j have the same valence, their
normalized volume fractions are equal across the solution
�i /�i

�=� j /� j
�. The profiles depicted in Fig. 4 thereby hold

true both for the added and buffer ions. In the general case,
let us assume zsat be the valence of the ions forming a satu-
rated layer. Since we are inside the saturated layer, we have

FIG. 2. Comparison between monodisperse and polydisperse
situations through the dimensionless surface potential �0

* of a
charged wall as a function of the concentration of added ions c�.
The solution is made of 10 mM of a 1:1 buffer electrolyte and a 1:1
added electrolyte. The wall has a surface charge density of �0

=−0.2 C m−2. The solid line is the numerical solution from the gen-
eralized Poisson-Fermi equation with an excluded volume for added
ions of 0.8 nm3, and for buffer ions fixed at 0.15 nm3. The dashed
lines represent the numerical solutions for the Poisson-Fermi equa-
tion where all ions have an identical excluded volume indicated
next to the curves. The dotted line arises from the classical Poisson-
Boltzmann theory.

FIG. 3. �a� Dimensionless surface potential �0
* of a charged

wall as a function of the concentration of added ions c� and of their
excluded volume v. The solution and the charge of the wall are the
same as in Fig. 2. �b� Dimensionless surface potential �0

* normal-
ized to its value given by the Poisson-Boltzmann theory ��0

*�PB

plotted versus c� and v for the same conditions.
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�k�k1, where k refers to all the ion species of valence zsat.
As a consequence of the equality on the normalized volume
fractions for ions of same valence, the charge density inside
the saturated layer is constant: �satzsate�kck

� /�k�k
� and the

electrostatic potential given by the generalized Poisson-
Fermi equation in a homogeneous dielectric medium be-
comes a quadratic function of the space coordinate.

B. Hierarchical stratification of multivalent ions

We now turn our attention to electrolytes with counterions
of different valences. If we assume zi�zj and the ions i form
a saturated layer �high zi�*�, then according to Eq. �18�—or
equivalently Eq. �20�—the ions j will be strongly depleted.
Resulting profiles are depicted in Fig. 5�a�. In that case, the
ions undergo a hierarchical stratification where successive
layers enriched in ions of decreasing valence build up start-
ing from the wall. The global saturated layer extends up to
1.5 times the Debye length, with saturated trivalent cations
coming first, then a layer of divalent cations and around 50%
of monovalent cations at the edge of the global saturated
layer. This stratification of ions cannot be predicted by the
Poisson-Boltzmann theory for which the cations are attracted
onto the wall by the electrostatic force regardless their spatial
occupancy �Fig. 5�b��.

Figure 6 compares the ion volume fractions for the same
system when the excluded volumes of cations are 1 nm3 for
all of them �dashed lines� and when those of divalent and
monovalent cations become 0.7 and 0.8 nm3, respectively
�solid lines�. As expected, the layers become narrower with
smaller excluded volumes. We see also that even the layer of
unchanged trivalent cations is affected by the other cations
because these latter can penetrate into the layer of trivalent
cations more easily thanks to their smaller size. Furthermore,

the layers are not necessarily saturated �volume fractions sig-
nificantly lower than 1� and we can find a lower bound for
their maximal value �i

max. Inside a layer, the ion species i is
dominant, and consequently �FS1−�i

max. The thermody-
namic equilibrium condition on the chemical potential—Eqs.
�15� and �16�—at the maximal volume fraction, then leads to

zi�*  ln	1 − �i
max

�i
max

�i
�

�FS
� 
 . �23�

Since zi�*�0 because we consider here counterions, we ob-
tain the following inequality:

FIG. 4. Ion volume fractions normalized to their bulk value next
to a charged wall. The concentration of added ions is c�=30 mM,
the excluded volume of added counterions v=1 nm3, and the other
parameters are the same as those in Fig. 2. The solid lines are
solutions computed with the generalized Poisson-Fermi equation
while the dotted lines are from the Poisson-Boltzmann theory. The
labels +1 and −1 indicate the profiles of counterions and coions
respectively. In inset, the profile of the dimensionless electrostatic
potential is plotted for both theories.

FIG. 5. Spatial repartitions of ions with different valences. The
solution is made of three electrolytes: a 3:1 at 10 M, a 2:1 at
10 mM, and a 1:1 at 300 mM. The wall has a charge density of
�0=−0.4 C m−2. All the counterions have an excluded volume of
1 nm3 and the coions 0.15 nm3. �a� Ion concentrations given by the
generalized Poisson-Fermi equation. The inset is a schematic of the
ion stratification next to the wall. �b� Ion concentrations given by
the Poisson-Boltzmann theory. The numbers next to the curves on
�a� and �b� indicate the ion valence.

FIG. 6. Effect of the excluded volume on the ion stratification.
The dashed lines represent the volume fractions of ions in the same
conditions as in Fig. 5. The solid lines are the volume fractions
when the excluded volumes become 0.7 and 0.8 nm3 for divalent
and monovalent cations respectively. Trivalent cations and anions
keep an excluded volume of 1 and 0.15 nm3, respectively. The
numbers next to the curves indicate the ion valence.
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�i
max �

1

1 +
�i

�

�FS
�

. �24�

Equation �24� tells us that counterion species occupying a
small volume fraction in the bulk with respect to the free
space �low �i

� /�FS
� � will be prone to become packed in an

enriched layer formed next to the wall.
The profiles in Figs. 5�a� and 6 must be considered care-

fully because the electrostatic correlation effects, which be-
come important with multivalent ions, are not included into
the generalized Poisson-Fermi equation. These effects tend
to diminish the repulsion between like-charged ions so that
the enriched layers are expected to build up for smaller elec-
trostatic potentials.

C. Ionic repartition with dielectric solvent model

So far the solvent has been considered implicitly as a
continuum of dielectric constant �. We see from the general-
ized Fermi-like distribution �19� that introducing solvent par-
ticles of zero valence has no influence upon the volume frac-
tions of ions, and their concentration does not even enter the
Poisson equation �22�. The solvent therefore only intervenes
through the dielectric properties it confers to the system. As
the counterions are attracted onto the wall and build up an
enriched layer, the dielectric constant is no longer the same
across the solution and depends on the local volume fractions
of ion species. An effective dielectric constant �eff can be
computed through the Bruggeman equation �54,55�

�
i=1

M

�i
�i − �eff

�i + 2�eff
+ �FS

�FS − �eff

�FS + 2�eff
= 0, �25�

where �i and �FS denote the dielectric constants of ion spe-
cies i and of free space, respectively. The resulting effective
dielectric constant must be substituted into the Poisson equa-
tion �22� but also into the boundary condition at the wall.
Figure 7 displays the solution of the generalized Poisson-
Fermi equation solved self-consistently with the Bruggeman
model for ions in water. Even though the charge density of
the wall is rather moderate, we can observe a significant
change of the effective dielectric constant across the solu-
tion, which translates into a discrepancy with the model of
homogeneous medium. The volume fraction of counterions
near the wall becomes higher than in a homogeneous me-
dium because the effective dielectric constant is locally re-
duced. Such an adsorption was reported in electrostatic cal-
culations of B-DNA in presence of NaCl and CaCl2 �56�:
cations, and especially divalent ones, are strongly adsorbed
on the phosphate groups of DNA as a result of the dielectric
effects arising from the ion packing.

The effective dielectric constant �eff should also include
two additional effects due to the dynamic of the water struc-
ture around the ions, namely, �i� the kinetic depolarization
and �ii� the structure saturation. These effects can yield a
small dielectric decrement with respect to the Bruggeman
model as reported experimentally for aqueous NaCl solutions
at various concentrations �57�.

FIG. 7. Effects of the dielectric solvent �water� on the ion repartition. The solution is made of 80 mM of 1:1 added electrolyte with
10 mM of 1:1 buffer electrolyte. The excluded volume of added cations is 1 nm3 while the rest of ions have an excluded volume of
0.15 nm3. The surface charge density of the wall is only �0=−0.03 C m−2. The water molecules have an excluded volume of 0.011 nm3

�effective radius of �1.4 Å� and a concentration of 55 M. The dielectric constants of free space and water molecules are 78 while the ions
in solution have a dielectric constant of 1. The solid lines denote numerical solutions obtained with the Bruggeman model and the dashed
lines label the solutions with a homogeneous medium of dielectric constant 78. �a� Volume fractions of added cations and water molecules.
�b� Dimensionless surface potential. �c� Effective dielectric constant. The Debye length �−1 is calculated with the dielectric constant of water,
namely, 78.
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IV. CONCLUSION

We have established a generalized Poisson-Fermi formal-
ism to compute the electrostatic potential in the presence of
multiple polydisperse ions. The theory provides insight into
size correlation effects such as the depletion of ions at de-
creasing valences which gives rise to their hierarchical strati-
fication. We have also proposed to address the variations of
effective dielectric constant by using self-consistently the
Bruggeman model �25�.

In a future work, the domain of validity of the generalized
Fermi-like distribution �19� will be investigated in terms of
dispersion of excluded volumes. In particular, the refined
version presented in the Appendix will be evaluated and the
role of the effective excluded volume 
 identified. Monte
Carlo simulations and density functional theory may be valu-
able for comparison as they can help assess the error lying
within the higher-order terms in the expansion of the excess
free energy. It should be noted that in order to accurately and
quantitatively incorporate correlation effects, a nonlocal
theory is needed, for example, by including convolutions of
the ion direct correlation function with ionic density. A local
theory as presented herein can only be justified if the system
shows inhomogeneities on length scales that are larger than
the typical correlation length. Such a nonlocal approximation
in density functional theory for particles of any shape has yet
to be worked out, and meanwhile, the generalized Poisson-
Fermi formalism offers a compromise between accuracy and
computational cost.

We believe that the generalized Poisson-Fermi formalism
can reveal a number of other theoretical features regarding
the ion size effects. The generalized Fermi-like distribution
�19� can be implemented into existing nonlinear Poisson-
Boltzmann solvers such as DELPHI �4� or the Adaptive
Poisson-Boltzmann Solver �APBS� software package �58�,
and applied to realistic macromolecular geometries. The ex-
isting numerical models of biomolecules can be reused with-
out specific modification. The methodology can be employed
to assess the binding properties of large ions to lipid mem-
branes by electrophoretic mobility �12,13�. The experimental
mobilities could be compared to numerical values obtained
by solving the electrokinetic equations �1� consistently with
the generalized Poisson-Fermi formalism along with a Lang-
muir adsorption model to account for the binding mecha-
nisms at the surface of the membrane. The ion atmosphere
around a complex biomolecule such as DNA given by our
theory can be also confronted to experimental data obtained
by buffer equilibration and atomic emission spectroscopy
�59�. Indeed, this technique emphasized the ion size effects
on the association of large ions to DNA which cannot be
described by the classical Poisson-Boltzmann theory.
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APPENDIX

The generalized Fermi-like distribution �19� can be re-
fined by taking into account higher-order terms in the expan-
sion of the chemical potential. The idea is to assume that the
functionals �Si appearing in the expansion �11� are small
compared to the first term. This is because they are made of
the difference of functions that are expected to be close to
each other. If we approximate the chemical potentials by
retaining the terms in �v,i but dropping out those in �v,i�Si,
we end up with

i��,�,c1, . . . ,cM ;v1, . . . ,vM�

 zie� + kBT ln�ci�i
3� − kBT

vi



ln �FS + kBT	1 −

vi




 .

�A1�

After expressing the thermodynamic equilibrium for the
chemical potentials of each ion species, and recombining the
equations so as to have only the volume fraction of species i
as a function of the electrostatic potential, we obtain the
following nonlinear relation:

��FS
� + �

j=1

M

exp�− zj�*�� j
��	exp�zi�*�

�i

�i
�
1/1+�i��j�

�	exp�zi�*�
�i

�i
�
1/1+�i

= 1, �A2�

with 1+�i�vi /
. This equation cannot be solved analyti-
cally in the general case. A numerical solution can be ob-
tained by employing an iterative method starting with the
generalized Fermi-like distribution �19�. In addition, pertur-
bation theory can provide an expansion of the solution which
may offer more insight into the physics behind, with a loss of
accuracy though. Accordingly, we assume that the solution
takes the form

�i = �i,0�1 + �
j=1

M

�ij,1� j + o�max
j

�� j��� . �A3�

After injection into the nonlinear relation �A2� and identifi-
cation of the polynomial multipliers, we obtain

�i,0 =
1

�
exp�− zi�*��i

�,

�ij,1 =
ln �

�
exp�− zj�*�� j

�,

�ii,1 = ln �	 1

�
exp�− zi�*��i

� − 1
 �A4�

with �=�FS
� +�k=1

M exp�−zk�*��k
�.

Expectedly, we recover the generalized Fermi-like distri-
bution �19� in the first term of the expansion.

The effective excluded volume 
 has been so far left
aside because it does not appear in the generalized Fermi-
like distribution �19�. However, in order to compute the free
energy �21� or to employ the nonlinear relation �A2� to cal-
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culate the ionic volume fractions, we need an analytical ex-
pression. In addition to the constraints formulated in �10�, we
can intuitively understand that the entropy of free space SFS

must conserve a symmetric form when an ion species i is
either of negligible size �∀rvi�r�=0� or in a vanishing con-
centration �∀rci�r�=0�. In short, this reads

�SFS�c1, . . . ,ci = 0, . . . ,cM ;v1, . . . ,vM�
SFS�c1, . . . ,cM ;v1, . . . ,vi = 0, . . . ,vM� �

= SFS�c1, . . . ,ci−1,ci+1, . . . ,cM ;v1, . . . ,vi−1,vi+1, . . . ,vM� .

�A5�

Especially, the first term in expansion �11� must follow this
condition. This is inherently true for the volume fraction of
free space �FS, and it must therefore be forced for the effec-
tive excluded volume 
 which we can make depend upon the
bulk concentrations. An expression of practical interest
would be therefore the mean excluded volume averaged by
the volume fractions in the bulk, i.e.,


�v1, . . . ,vM� =

�
i=1

M

�i
�vi

�
i=1

M

�i
�
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